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INTRODUCTION

Applications of Human Action Recognition
intelligent video surveillance
perceptual interface
content-based video retrieval
etc

Existing Methods for Human Action Recognition
Flow based [AA Efros et al., ICCV 2003]
Template based [L. Gorelick et al., PAMI 2007]
Interest points based [J. Niebles et al., IJCV 2008]
Trajectory based [R. Messing et al., ICCV, 2009]
Manifold learning-based [Wang et al., TIP, 2007]
Etc

Manifold learning-based methods (LPP and SLPP)
achieved great success
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LLPP AND SLPP v o

Framework of LPP and SLPP

1. Constructing the adjacency graph
o ¢-neighborhood, KNN, or supervised O

2. Choosing the weights =
. . WIJ

o Simple-minded or heat kernel
3. Eigenmaps

o Solve the optimization problem - © .1\ .

projection matrix °, %
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PROBLEMS
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CHARACTERISTIC OF
HUMAN ACTIONS

o similar pose in two different actions

two actions < ! . = = l

o dissimilar pose in the same action
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PROBLEMS IN LPP AND
SLPP

adjacency graphs play an important role in LPP
and SLPP

LPP SLPP
® (]
O ./t
O
o o
O

1n adjacency graph construction:
LPP only considers the local information
SLPP only considers the class information
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PROPOSED METHOD
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Reasonable adjacency graph
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THE TOPOLOGY IN LPP AND SLPP

the adjacency graph corresponding to a topology

Data points with different topologies are considered
to be different manifolds.

denote: LPP s 7, , and SLPP 5 7.

7, : topology induced by Kuclidean, consider Euclidean
distance & -> data close together are in the same
neighborhood

7 ,: topology induced by label information, consider class
distance € - data point from same action are in the same
neighborhood

two class problem = 7, {@Spszas}

Iintegrate these two together?
restrict the 7,0on r,0r 7,0n 7,

Iy
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A NEW TOPOLOGY

proposed method: define a new topology 7, so
that make use of class label information and the
local information

a subset is open In 74 Uf it is the intersection of
action data set S; with an open set in the FEuclidean

space.
LPP SLPP SNTL

1 node T node , '
link link ink oY
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ADVANTAGE OF NEW TOPOLOGY

SNTL

Keep the local information

temporal information
more suitable for manifold learning
4

Keep the label information

recognition perspective , el
preserve the discriminative features link
make use of our new topology, and adopt the
framework of LPP, we propose Supervised
Neighborhood Topology LLearning (SN'TL)
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ALGORITHMIC PROCEDURE

Proposed Neighborhood Topology Manifold Learning:

1. Computing KNN parameter k; for class i. Choosing a percentage
parameter a, 0<a<l, let k=aN,, where N denotes the sample number
of class .

2. Putting edges on the graph. An edge will be put between nodes t
and s, if x, and x belong to the same class i, and x, is among the k
nearest neighbors of X, or X, is among the k; nearest neighbors of x..

3. Eigenmaps. Optimize the cost function by EVD.
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EXPERIMENTS
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EXPERIMENT SETTING

Database person num | action num training testing

Weizmann 9 10 8 persons 1 person

o leave-one-out rule
o example frames of different actions

bend jack jump pjump

side skip w alk wavel wave2

o Classifier: nearest neighbor framework with
median Hausdorff distance

d(A’AJ) = S(A’Aj)_l_S(Aj’A);
S(A. A) = median(min(|A (k) - A ()])) O
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COMPARATIVE EXPERIMENTS 1
2D embeddings of training data bySNTL, LPP and SLPP
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recagnition rate

COMPARATIVE EXPERIMENTS 2
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CONCLUSION
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CONCLUSIONS

o Propose a new supervised manifold learning
method,

e namely supervised neighborhood topology learning
(SNTL)

o for recognition perspective

o Advantages
e preserves discriminative features

o preserves temporal information of each action contained
in local structure

o Disadvantages

e Do not take full advantage of temporal information
o Parameter is empirically determined @
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